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We investigate the application of linear-quadratic-Gaussian (LQG) feedback control,
or, in modern terms,H2 control, to the stabilization of the no-motion state against the
onset of Rayleigh–Bénard convection in an infinite layer of Boussinesq fluid. We use
two sensing and actuating methods: the planar sensor model (Tang & Bau 1993, 1994),
and the shadowgraph model (Howle 1997a). By extending the planar sensor model
to the multi-sensor case, it is shown that a LQG controller is capable of stabilizing
the no-motion state up to 14.5 times the critical Rayleigh number. We characterize
the robustness of the controller with respect to parameter uncertainties, unmodelled
dynamics. Results indicate that the LQG controller provides robust performances
even at high Rayleigh numbers.

1. Introduction
When a layer of fluid at rest is heated from below, fluid motion will develop

into well-organized convection patterns if the temperature difference across the layer
is sufficiently large (Cross & Hohenberg 1993). For certain industrial applications,
developing a temperature gradient across the fluid layer is unavoidable but at the
same time preventing convective fluid motions is desirable. Some examples involving
undesirable effects of convection are materials processing, solidification, semiconduc-
tor melts, welding, evaporative coating and crystal growth. Our aim is to use robust
modern control methodologies to inhibit the onset of convection while permitting a
large thermal gradient across the layer of fluid.

The idea of stabilizing the fluid layer against the onset of cellular motions has been
advanced by Tang & Bau (1993, 1994, 1998a, b) and Howle (1997a–c, 2000). Tang &
Bau assumed that the temperature field can be measured continuously on a horizontal
plane in x, y and t (see figure 1). The measurements are then used to control the
temperature at the lower wall, in order to cancel the thermal disturbances in the
fluid that drive the overturning motions. Howle (1997a) investigated a similar control
problem, except in his case the measurements consist of shadowgraph images of the
fluid. The shadowgraph images capture the horizontal distribution of the vertical-
mean temperature. Moreover, in Howle’s model, heat flux rather than temperature
is prescribed at the lower wall. Both types of sensor and actuator models will be
considered in this study using a more sophisticated form of control synthesis.

Based on proportional feedback control, the results of Tang & Bau and Howle
show that both sensor models exhibit a maximal achievable stable value of Rayleigh
number Ra, beyond which this simple controller is ineffective for stabilization. For the
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Figure 1. Planar sensor model.

planar-sensor model Tang & Bau (1993, 1994) showed that the controller can inhibit
convection up to a maximum of about 3.8 times Rac0 at Pr = 7, where Rac0 = 1707.76
is the uncontrolled critical value. This value is Pr-dependent. Furthermore, they (Tang
& Bau 1994) considered a velocity actuator which inhibits convection up to 10 times
the critical Rayleigh number. For the shadowgraph sensor model this maximum
is about 3.13 times Rac0 = 1295.78. In § 4 the differences in performance between
the two sensor models using only the thermal actuators, and the limitations of the
proportional feedback control will be discussed.

The degree of stabilization can be improved significantly by using synthesis methods
for multiple-input/multiple-output systems which produce dynamic compensators.
However, in this study a distributed single-input/multiple-output strategy will be
considered, since normal modes of different wavenumbers decouple and each normal
mode can be controlled individually.

One such synthesis method is known as the linear-quadratic-Gaussian (LQG)
control (Bryson & Ho 1969), or, in modern terms,H2 control. Other methods such as
H∞ synthesis (Rhee & Speyer 1991) could also be applied, but we suspect with similar
results. The LQG approach allows us to consider a nominal design Rayleigh number
(Ra∗) significantly higher than that considered in the previous studies. For values of
Ra sufficiently near Ra∗, stabilization with the LQG controller appears always to be
achievable. Moreover, for Ra∗ below a certain threshold, the complete range of Ra
up to a critical value can be stabilized. In this study, we show that the system can
be stabilized up to Ra = 14.8Rac0. In this range the first even and odd modes of
convection can become unstable. However, these two modes are damped by the LQG
controller. The higher modes are naturally damped within this range of Ra. Our aim
is to ensure stability over the entire range of Ra up to a maximum critical Rayleigh
number, without the formation of isolated unstable regions within this range. This
requires the determination of the value of Ra∗ to produce this maximum critical
Rayleigh number.

Unlike the proportional control method, the LQG synthesis method requires some
elaboration. This synthesis method consists of two steps: (i) a reconstruction of the
internal states of the plant based on the measured information, and (ii) a regulation
of the plant states in order to drive the estimated perturbations to a zero level. To
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accomplish these two steps, the LQG controller is formed by a Kalman filter and an
optimal regulator in cascade.

The LQG synthesis method has recently been used in the study of drag reduction
in channel flow by Joshi, Speyer & Kim (1999) and by Cortelezzi & Speyer (1998)
based on Joshi, Speyer & Kim (1997) who first introduced the system theory approach.
Cortelezzi & Speyer (1998) presented a framework suited to practical implementations
and demonstrated the performance of the design in numerical simulations. Following
this framework, our investigations focus on a robust stability analysis of the closed-
loop system as applied to Rayleigh–Bénard convection. Design parameters of the
filter and regulator are carefully chosen to enhance the robustness of the stabilization.
Several integrated design aspects are discussed.

This study is intended to provide a design of controllers for future experiments.
The design goal is to maximize the stability range of Rayleigh number. This implies
designing controllers at the highest possible design value Ra∗, without causing an
unstable, isolated region to form below Ra∗. Since the controllers are implemented
at each wavenumber and only Ra is being varied, one form of robustness being
demonstrated is the robustness of the system with respect to variations in Ra away
from Ra∗. Another form of robustness is concerned with uncertainties in the system
apart from the mismatch in Ra, for example uncertainties due to nonlinearities or
unmodelled dynamics. The objective of this paper is to produce a robust design based
on classical relative stability measures of gain and phase margins that accommodates
to a degree unmodelled dynamics and nonlinearities. Nonlinear simulation is required
to validate the design. We will show that the gain and phase margins depends crucially
on the number of sensors used. More measurements implies better knowledge about
the internal states of the system. In this study we are interested in determining
the minimum number of sensor planes, as well as their locations, for achieving a
reasonable degree of robustness. From a theoretical point of view, the planar sensor
model appears to be more effective and accurate than the shadowgraph sensor model,
mainly because a multiple planar sensor configuration can be readily incorporated. As
the results will show, increasing the number of sensors, i.e. the measured information
about the internal states, is crucial for achieving the desirable robustness.

We now proceed to § 2 to derive the standard state-space equations for both sensor
models. In § 3, we review the theory of the LQG optimal control synthesis. In § 4, the
results are discussed and in § 5, we conclude the paper.

2. State-space formulation
In this Section, we derive the state-space equations. Following the framework pre-

sented by Cortelezzi & Speyer (1998), we start from the governing equations and
subsequently transform them into a set of ordinary differential equations expressed
in state-space form. This procedure includes a transformation of variables, a spec-
tral decomposition of the resulting equations and expressing these equations in the
standard state-space form.

2.1. Governing equations

We consider an infinite layer of Boussinesq fluid heated from below, which is parallel
to the (x, y)-plane and bounded by non-permeable walls at z = ±d/2 (see figure 1).
Our aim is to compare the performance of the LQG controller with the performance of
the proportional feedback control method based on two known models. Therefore, in
our formulation the boundary conditions used in these two models will be preserved.
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For both models, the upper wall is assumed to be infinitely conductive at constant
temperature T ∗1 . For the planar sensor model (Tang & Bau 1993, 1994, 1998a, b)
temperature is measured on an interior plane (see figure 1, T ∗(z) denotes the basic
state). These measurements are used to modify the constant lower wall temperature T ∗2
with the actuator temperature θ∗c (x, y, t). For the shadowgraph sensor model (Howle
1997a, b) measurements of the vertical-mean temperature distribution are obtained in
the form of a shadowgraph. These measurements are used to modify the constant heat
flux Q∗ at the lower wall with the actuator heat flux q∗c (x, y, t). Different actuators are
used to allow direct comparisons between the performances of the LQG controllers
and the proportional controllers used in the original models.

We scale length, time, velocity, pressure relative to the hydrostatic pressure, and
temperature, respectively, by d, d2/κ, κ/d, ρνκ/d2 and (T ∗2 −T ∗1 ) or Q∗d/K depending
on the model chosen, where ρ, κ, ν and K are, respectively, density, thermal diffusivity,
kinematic viscosity and thermal conductivity of the fluid. The linear stability equa-
tions for the vertical perturbation velocity w(x, y, z, t) and perturbation temperature
θ(x, y, z, t) are

(Pr−1∂t − ∇2)∇2w = Ra∇2
⊥θ, (2.1)

(∂t − ∇2)θ = w, (2.2)

where ∇2⊥ = ∇2 − ∂zz (e.g. Chandrashekhar 1961). The Prandtl number is Pr = ν/κ.
The Rayleigh number for the planar and shadowgraph cases are defined, respectively,
as Ra = αg(T ∗2 − T ∗1 )d3/νκ and Ra = αgQ∗d4/Kνκ, where α is the coefficient of
volume expansion and g is the gravitational acceleration.

The boundary conditions on velocity are

w(x, y,±1/2, t) = ∂zw(x, y,±1/2, t) = 0. (2.3)

For the thermal boundary conditions, the upper wall is considered isothermal so that
the perturbation temperature must satisfy

θ(x, y, 1/2, t) = 0. (2.4)

Based on the planar and shadowgraph sensor models (Tang & Bau 1993, 1994; Howle
1997a), we apply a continuous time-dependent control temperature along the lower
wall for the planar sensor case,

θ(x, y,−1/2, t) = θc(x, y, t), (2.5)

while for the shadowgraph model we apply a continuous time-dependent heat flux qc
instead,

∂zθ(x, y,−1/2, t) = qc(x, y, t). (2.6)

The planar sensor model measures the temperature distribution at a number I of
(x, y)-planes located at z = z(i)

s ∈ [−1/2, 1/2], where i = 1, 2, . . . , I . The measurement
equations are

θ(i)
s (x, y, t) = θ(x, y, z(i)

s , t), i = 1, 2, . . . , I, (2.7)

where z(i)
s is the z-coordinate of the ith sensor plane. The shadowgraph model

measures the average density over the whole layer, ρs, which is expressed in terms of
temperature by

ρs(x, y, t) =

∫ 1/2

−1/2

∇2
⊥θ(x, y, z, t) dz, (2.8)
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where ρs is the measurement function in density. We refer readers to Howle (1997a)
for the derivations of this integral expression.

2.2. Transformation of dependent variables and cost criterion

We transform the perturbation temperature so that equations (2.1)–(2.8) have hom-
ogeneous thermal boundary conditions. The perturbation velocity remains unchanged.
With the perturbation temperature as θ ≡ φ+ ξ, we obtain for both sensor models

(Pr−1∂t − ∇2)∇2w − Ra∇2
⊥φ = Ra∇2

⊥ξ, (2.9)

(∂t − ∇2)φ− w = −(∂t − ∇2)ξ, (2.10)

subject to the boundary conditions

w(x, y,±1/2, t) = ∂zw(x, y,±1/2, t) = φ(x, y, 1/2, t) = 0. (2.11)

Furthermore, for the planar sensor model φ must satisfy the boundary condition

φ(x, y,−1/2, t) = 0, (2.12)

while for the shadowgraph sensor model φ must satisfy the boundary condition

∂zφ(x, y,−1/2, t) = 0. (2.13)

The forcing function ξ satisfies a non-homogeneous boundary condition at the
lower wall and a homogeneous boundary condition at the upper wall. For the planar
case these conditions are

ξ(x, y,−1/2, t) = θc(x, y, t), ξ(x, y, 1/2, t) = 0, (2.14)

and for the shadowgraph case we have instead

∂zξ(x, y,−1/2, t) = qc(x, y, t), ξ(x, y, 1/2, t) = 0. (2.15)

The two set of measurement equations in terms of the new variables for the planar
and shadowgraph cases become

θ(i)
s (x, y, t) = φ(x, y, z(i)

s , t) + ξ(x, y, z(i)
s , t), i = 1, 2, . . . , I, (2.16)

and

ρs(x, y, t) =

∫ 1/2

−1/2

∇2
⊥(φ(x, y, z, t) + ξ(x, y, z, t)) dz. (2.17)

Note that the sensors could be located at discrete points in the (x, y)-plane, but to be
consistent with Tang & Bau (1993, 1994) we have considered continuously distributed
sensors. Furthermore, Tang & Bau’s (1998a) experiment using discrete sensors and
actuators shows consistency with their theoretical work using continuously distributed
sensors and actuators.

Finally, we introduce the cost criterion. Our goal is to design a controller able
to drive the measured perturbation temperature to zero, without using unnecessarily
large control action, hopefully resulting in little saturation of the actuators. Thus, the
performance index includes weighting on the control. We consider a layer of fluid
with large aspect ratios Lx and Ly with periodic boundary conditions (see figure 1),
assuming that the influence of the lateral boundary conditions in a finite layer of fluid
is negligible. The LQG controller is determined by finding the control action which
minimizes the cost criterion. For the planar sensor model we define the cost criterion
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as

J =

∫ T

t

{∫ Lx

0

∫ Ly

0

[
I∑
i=1

(θ(i)
s )2 + γθ2

c

]
dx dy

}
dτ, (2.18)

and for the shadowgraph sensor model it is

J =

∫ T

t

{∫ Lx

0

∫ Ly

0

∫ T

t

(ρ2
s + γq2

c ) dx dy

}
dτ. (2.19)

2.3. Modal decomposition

A periodic boundary condition permits us to perform a Fourier decomposition in
the horizontal coordinates. The vertical dependence of the flow field and thermal
field is constrained by the upper and lower wall boundary conditions. The vertical
dependence will be decomposed separately in § 2.4. We describe an infinitesimal three-
dimensional disturbance to the no-motion state. Consequently, we have a double sum
of the Fourier normal modes for the disturbances:

w(x, y, z, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Wr,mn(z, t) + iWi,mn(z, t)]e

i(mkxx+nkyy) + c.c.},

φ(x, y, z, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Φr,mn(z, t) + iΦi,mn(z, t)]e

i(mkxx+nkyy) + c.c.},

ξ(x, y, z, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Ξr,mn(z, t) + iΞi,mn(z, t)]e

i(mkxx+nkyy) + c.c.},


(2.20)

where c.c. denotes the complex conjugate. The measurement and control functions
are represented by

θ(j)
s (x, y, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Θ(j)

sr,mn(t) + iΘ(j)
si,mn(t)]e

i(mkxx+nkyy) + c.c.}, j = 1, . . . , I,

ρs(x, y, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Rsr,mn(t) + iRsi,mn(t)]e

i(mkxx+nkyy) + c.c.},

θc(x, y, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Θcr,mn(t) + iΘci,mn(t)]e

i(mkxx+nkyy) + c.c.},

qc(x, y, t) =

M∑
m=1

N∑
n=1

{ 1
2
[Qcr,mn(t) + iQci,mn(t)]e

i(mkxx+nkyy) + c.c.},


(2.21)

where the subscripts r and i indicate real and imaginary parts, respectively. The
two fundamental wavenumbers are kx = 2π/Lx and ky = 2π/Ly . From the classical
theory without control, a normal mode disturbance is unstable in the region above a
neutral curve Ra0(k) (Chandrashekhar 1961), where Ra0 is the Rayleigh number at

neutral stability in the open-loop system and k =
√
k2
x + k2

y is the magnitude of the

wavevector. We truncate the infinite series above to M ×N horizontal modes, which
span the unstable range. Since the basic equations depend only on the horizontal
Laplacian ∇2⊥, the wavenumbers appear only in even powers and can be described
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in terms of an internal parameter k(m, n), where k(m, n) =
√
m2k2

x + n2k2
y . We further

substitute (2.20) and (2.21) into equations (2.9)–(2.17) and separate the real and
imaginary parts. It should be remarked that the linear structure includes all patterns
at the onset. Certain realizable patterns, such as rolls and hexagons, will be selected
when the nonlinear and symmetry-breaking effects are included in the model. The
paper is focused on the stabilization of the no-motion state. Suppression of selected
convection patterns and return to the no-motion state will be addressed by applying
our LQG controller to a direct numerical simulation of convection.

Since the governing equations contain only even derivatives with respect to x or
y, the real and imaginary parts of the dependent variables decouple and satisfy the
same set of equations. Furthermore, since the problem is linear, we can consider each
normal mode separately. For simplicity of notation, we drop the indices of the Fourier
coefficients, and define W ≡Wr,mn = Wi,mn, Φ ≡ Φr,mn = Φi,mn, Ξ ≡ Ξr,mn = Ξi,mn, Θc ≡
Θcr,mn = Θci,mn, Qc ≡ Qcr,mn = Qci,mn, Θ

(i)
s ≡ Θ(i)

sr,mn = Θ
(i)
si,mn and Rs ≡ Rsr,mn = Rsi,mn. The

governing equations are reduced as follows:

[Pr−1(∂2
z − k2)∂t − (∂2

z − k2)2]W + Rak2Φ = −Rak2Ξ, (2.22)

[∂t − (∂2
z − k2)]Φ−W = −[∂t − (∂2

z − k2)]Ξ. (2.23)

The boundary conditions are homogeneous. For the planar case we have

W (±1/2, t) = ∂zW (±1/2, t) = Φ(±1/2, t) = 0, (2.24)

and for the shadowgraph sensor model we have instead

W (±1/2, t) = ∂zW (±1/2, t) = Φ(1/2, t) = 0, ∂zΦ(−1/2, t) = 0. (2.25)

The forcing function Ξ satisfies the non-homogeneous boundary condition at the
lower wall and the homogeneous boundary condition at the upper wall. For the
planar case the forcing function is given by

Ξ(−1/2, t) = Θc(t), Ξ(1/2, t) = 0, (2.26)

and the corresponding measurement functions are

Θ(i)
s (t) = Φ(z(i)

s , t) + Ξ(z(i)
s , t), i = 1, 2, . . . , I. (2.27)

For the shadowgraph sensor model, the forcing function Ξ is

∂zΞ(−1/2, t) = Qc(t), Ξ(1/2, t) = 0, (2.28)

and the corresponding measurement function is

Rs(t) = −k2

∫ 1/2

−1/2

(Φ(z, t) + Ξ(z, t)) dz. (2.29)

In our approach, each distinct horizontal normal mode is controlled by a separate
controller. Therefore, for the implementation M × N controllers are required. As a
simple illustration for the analysis, consider an aspect ratio Lx/d and Ly/d equal to
20π. In this case, the only wavenumbers present are the fundamental wavenumber
kf = 2π/L = 0.05, and its harmonics: for Ra up to 15Rac0, the wavenumbers are
from k = kf to k = 12 (equal to 240kf). These wavenumbers represent the ensemble
of normal modes used to represent the convection field.

In a physical implementation of the planar sensor model, both the measurements
and control action occur in physical space but the controllers operate in the Fourier
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Figure 2. (a) Schematic for the physical implementation of the multi-wavenumber controller: Rn,
regulator; Fn, filter; and FFT, fast Fourier transform. (b) Block diagram of the control loop for a
single wavenumber.

space. Sensors and actuators are interfaced to the controllers by fast Fourier trans-
forms (FFT). Figure 2(a) links with simplicity the mathematical formulation to its
computational implementation by summarizing in a block diagram the control strat-
egy described above. The controllers can be programmed in a computer routine whose
inputs are the arrays containing the temperatures measured by the planar sensors
and whose output is an array containing the temperatures to be applied at the
bottom the wall. The temperature measurements obtained by the planar sensors are
converted by a fast Fourier transform into a set of modal sensor variables. Each pair
of estimator and control blocks is integrated in time. Parallel computation produces
the modal control variables. An inverse FFT converts the modal control variables
into the actuating temperature at the bottom wall. This routine can be embedded in
any Navier–Stokes solver able to handle time-dependent boundary conditions for the
control of more realistic simulations of Rayleigh–Bénard convection.

Figure 2(a) also provides the basic architecture for the potential implementation
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of the present controller in an experiment and, eventually, in practical engineering
applications. The temperature distribution at a given plane (z(i)

s ) (i = 1, 2, . . . , I)
could be measured by a planar sensor constructed with an array of micro-electro-
mechanical-system (MEMS) diode sensors (see Tang & Bau 1998a, b). Analog to
digital converters (A/D) and digital signal processors (DSP) would convert the
measured temperatures z(i)

s into the modal sensor variables. Each pair of estimator
and control blocks would be replaced by a microprocessor, and a parallel computation
produces the modal control variables. A DSP and a digital to analog converter (D/A)
would produce the actuating signal. Finally, an array of MEMS heaters would provide
the temperature distribution at the bottom wall (Tang & Bau 1998a, b).

2.4. State-space representation of temporal dynamics

In this subsection, we consider a numerical procedure to represent the vertical depen-
dence of the velocity and thermal field. We use the Galerkin approach (Gottlieb &
Orszag 1981) for the representation of the vertical dependence of the normal modes.
The beam functions {ϕm} are used as the basis functions for W which has to satisfy
four boundary conditions. On the other hand the sinusoidal functions {βm} are used
as basis functions for Φ which only has to satisfy two boundary conditions. In our
numerical computations, we truncate the infinite set to the first Nz terms for both
W and Θ. We use the same truncation number for both fields mainly for numerical
convenience.

In general the Chebyshev polynomials have good convergence properties. How-
ever, in our application an individual polynomial does not satisfy the homogeneous
boundary conditions. In contrast, individual beam functions do satisfy the homo-
geneous boundary conditions naturally and they converge reasonably fast for our
stability analysis. Also, since we have transformed the thermal boundary condition at
the lower wall to a homogeneous form, our results are not affected by Gibb’s phe-
nomenon in the vertical dependence. In practical applications when realistic lateral
boundary conditions are incorporated, Gibb’s phenomenon can affect the horizontal
dependence (at small wavenumbers) and therefore the performance of the controller.
However, the detrimental effects of Gibb’s phenomenon can be substantially reduced
using appropriate windowing techniques.

The Fourier coefficients for the vertical velocity W (z, t) are expanded as follows:

W (z, t) =

Nz∑
m=1

Am(t)ϕm(z) =

Nz∑
m=1

Am(t)

[
sinh (amz + imπ/2)

sinh (am + imπ/2)
− sin (amz + mπ/2)

sin (am + mπ/2)

]
.

(2.30)

Since the thermal boundary conditions for the planar sensor model and shadowgraph
sensor model are different, the sinusoidal basis functions {βm} are different for the
two cases. For the planar sensor model we let

Φ(z, t) =

Nz∑
m=1

Bm(t)βm(z) =

Nz∑
m=1

Bm(t)
√

2 sin [mπ(z + 1/2)], (2.31)

and for the shadowgraph sensor model we have instead

Φ(z, t) =

Nz∑
m=1

Bm(t)βm(z) =

Nz∑
m=1

Bm(t)
√

2 sin [(m− 1/2)π(z − 1/2)]. (2.32)
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A convenient choice for Ξ which satisfies the appropriate boundary conditions of the
planar sensor case is

Ξ(z, t) = (1/2− z)Θc(t), (2.33)

and one which satisfies the boundary conditions of the shadowgraph sensor case is

Ξ(z, t) = (z − 1/2)Qc(t). (2.34)

For the planar case, we now substitute (2.30), (2.31) and (2.33) into (2.22) and
(2.23), and perform the Galerkin projection. The following equations are obtained:

Pr−1

Nz∑
m=1

〈ϕj, (∂2
z − k2)ϕm〉Ȧm =

Nz∑
m=1

〈ϕj, (∂2
z − k2)2ϕm〉Am

−k2Ra

Nz∑
m=1

〈ϕj, βm〉Bm − k2Ra〈ϕj, (1/2− z)〉Θc, (2.35)

Ḃm =

Nz∑
m=1

〈βj, (∂2
z − k2)βm〉Bm +

Nz∑
m=1

〈βj, ϕm〉Am
−〈βj, (1/2− z)〉Θ̇c + 〈βj, (∂2

z − k2)(1/2− z)〉Θc, (2.36)

where the index j runs from 1 to Nz and the inner product 〈 , 〉 denotes integration
over z ∈ [−1/2, 1/2]. The corresponding equations for the shadowgraph model can
be obtained from (2.35), (2.36) by replacing Θc by Qc and (1/2 − z) by (z − 1/2).
Therefore the shadowgraph model equations will not be presented explicitly.

After substituting (2.31) and (2.33) into (2.27), we obtain I measurement equations
for the planar case,

Θ(i)
s (t) =

Nz∑
m=1

Bm(t)βm(z(i)
s ) + (1/2− z(i)

s )Θc, i = 1, 2, . . . , I. (2.37)

For the shadowgraph case, upon substitution of (2.32) and (2.34) into (2.29), we have
a single measurement equation

Rs(t) =

Nz∑
m=1

Bm(t)

∫ 1/2

−1/2

(−k2)βm(z) dz + Qc

∫ 1/2

−1/2

(−k2)(z − 1/2) dz. (2.38)

As a final step, we construct a state vector X by arranging the coefficients Am and
Bm as follows:

X ≡ [A1, A2, . . . , ANz
, B1, B2, . . . , BNz

]′, (2.39)

where superscript ′ denotes the transpose. Equations (2.35) and (2.36) can be rewritten
in state-space form as

Ẋ = AX + B1Θc + B2Θ̇c, (2.40)

while the measurement equation (2.37) can be re-written as

Θs = CX + D3Θc. (2.41)

In order to cast the matrix equation in a standard state-space form we can choose
either Θc or its time derivative as the control action variable. Here we define u = Θc.
The term Θ̇c can be eliminated from (2.40) by defining a new state vector x = X−B2Θc.
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Upon transformation, the state-space equations can be written as

ẋ = Ax+ Bu, (2.42)

z = Cx+ Du, (2.43)

where B = B1 +AB2, D = D3 +CB2, u = Θc and z = Θs. Matrices A, B , and C contain
the dynamics of the plant, actuators, and sensors, respectively. Matrix D contains the
direct coupling between sensors and actuators.

The cost function of each wavenumber can be minimized individually, because of
the orthogonality between pairs of Fourier modes. From (2.18), (2.19), following the
normal decomposition, the cost function in state-space form for wavenumber k is

J(k) =

∫ T

t

(z′z + γu′u) dτ. (2.44)

In § 4, we allow z to be a vector but restrict u to a scalar quantity u.

3. Optimal control theory
In this section we describe the basic theory of the LQG control (Bryson & Ho 1969),

or, in modern terms, H2 control. A brief review will be given in a self-contained
manner to provide the necessary governing equations for the closed-loop stability
analysis.

The LQG problem is formulated as a stochastic optimal control problem described
by equations

ẋ = Ax+ Bu+ Γw, (3.1)

z = Cx+ Du+ v, (3.2)

where Γ is an input matrix, w and v are both white noise processes with zero means
and auto-correlation functions

E[w(t)w′(τ)] = Wδ(t− τ), E[v(t)v′(τ)] = Vδ(t− τ), (3.3)

where E[·] is the expectation operator averaging over all underlying random variables
and δ(t−τ) is the delta function. Note that W and V , the power spectral densities, will
be chosen here as design parameters to enhance system performance. In our case Γ
will be taken as B , implying that the disturbances, in a manner similar to the control,
enter the system dynamics at the wall.

The LQG controller is determined by finding the control action u(Zt), where
Zt = {z(τ); 0 6 τ 6 t} is the measurement history, which minimizes the cost criterion

J = lim
T→∞

1

T − tE
[∫ T

t

(x′Qx+ 2x′Nu+ u′Ru) dτ

]
(3.4)

subject to the stochastic dynamic system model equations (3.1) and (3.2). The division
by (T − t) ensures that the cost criterion remains finite in the presence of uncertainties
in the infinite-time problem (T →∞). Note that (3.4) can include (2.44) where

J = lim
T→∞

1

T − tE[J(k)]. (3.5)

Note also that even though the time interval is infinite, time response is still measured
by the eigenvalues of the closed-loop system. We consider the infinite-time problem
with a time-invariant dynamics system because the controller gains become constants.



186 A. C. Or, L. Cortelezzi and J. L. Speyer

For Q and N chosen to be consistent with the cost criterion (2.44) (see (3.18)), the
cost criterion will remain positive definite (see Bryson & Ho (1969) for necessary and
sufficient conditions for optimality with general Q and N).

By nesting the conditional expectation with respect to Zt within the uncondi-
tional expectation of (3.4), i.e. E[J(k)] = E[E[J(k)/Zt]] where E[·/Zt] denotes the
expectation (·) conditioned on Zt, the cost criterion can be written as

J = lim
T→∞

1

T − tE
[∫ T

t

[x̂′Qx̂+ 2x̂′Nu+ u′Ru+ tr(P)] dτ

]
, (3.6)

where x̂ = E[x/Zt] is the conditional mean estimate of the state x. The term tr(P)
is the trace of the error variance matrix which naturally occurs as a result of taking
the conditional expectation into the integrand of the cost criterion. This cost criterion
is now minimized subject to the estimation equations discussed below. Note that P
does not depend on the control (see (3.9) below) and therefore does not enter into
the optimization process.

The solution to the regulator problem (Bryson & Ho 1969) is a compensator
composed of a state reconstruction process, known here as a filter (in the no-noise
case it is known as an observer) in cascade with a controller (see figure 2b). The state
estimate (conditional mean) is called the Kalman filter, and is governed by

˙̂x = A∗x̂+ B∗u+ Kfν , ν = z − ẑ = C∗(x− x̂) + v, (3.7)

where the matrices with asterisk superscripts correspond to the nominal point
(k∗, Ra∗). The Kalman gain matrix Kf , constructed to trade the accuracy of the
new measurements against the accuracy of the state propagated from the system
dynamics, is given by

Kf = PC∗′V−1, (3.8)

where P is the error variance in the statistical problem. In the infinite-time stationary
formulation, the error variance P is the solution to the algebraic Riccati equation
(ARE),

A∗P + PA∗′ + ΓWΓ′ − PC∗′V−1C∗P = 0. (3.9)

If the system is (A∗,C∗) observable and (A∗,Γ) controllable, then P is positive definite.
Under these assumptions, it can be shown that the difference between the internal
state x and the estimated state x̂, i.e. the error

e = x− x̂, (3.10)

goes to zero as time goes to infinity. In other words, the evolution equation

ė = Afe+ Kfν + Γw, (3.11)

is stable, i.e. all the eigenvalues of the matrix

Af = A∗ − KfC∗ (3.12)

have negative real part.
Minimizing the infinite-time cost function J , (3.6) subject to (3.7) yields the following

control law:

u = −Kcx̂, (3.13)

where

Kc = R−1(B∗′S + N ′), (3.14)
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and S is the solution of the algebraic Riccati equation (ARE)

A∗′S + SA∗ + Q − (SB∗ + N)R−1(B∗′S + N ′) = 0. (3.15)

It should be remarked that the control gain matrix Kc is determined from functions
only of the known dynamic coefficients (A∗,B∗) and weightings in the cost criterion
(Q ,R), and not the statistics of the input (V ,W ). Consequently, Kc is determined from
a performance index such as (3.4), independent of the stochastic inputs. If (A∗,B∗) is
controllable and (A∗,Q1/2) observable, then the loop coefficient matrix

Ac = A∗ − KcB∗ (3.16)

is stable. The controllable and observable conditions can be weakened to stabilizable
and detectable (Kwakernaak & Sivan 1972).

When we combine the estimator and the regulator, the dynamic system composed
of the controlled process and filter becomes(

ė
˙̂x

)
=

[
Af 0
KfC

∗ Ac

](
e
x̂

)
+

(
Kfv + Γw
Kfv

)
. (3.17)

Note that any choice of two among e, x̂ and x produces the same dynamics because
they are algebraically related by (3.10). Under the above controllability and observ-
ability assumptions, Af and Ac have only stable eigenvalues if optimal gains Kf and
Kc of (3.12), (3.16) are used. Other schemes such as H∞ could be proposed (Rhee
& Speyer 1991), but from experience these schemes seem to produce only secondary
modifications to the system performance over our LQG controller.

The infinite-time stationary formulation will be used in our study. The LQG control
loop is shown in the block diagram of figure 2(b). Note that the cost function (2.44)
can be expressed in the standard form (3.4), if we let

Q = C∗′C∗, N = C∗′D∗, R = (γI + D∗′D∗). (3.18)

Since the power spectral density is not known, for simplicity of the design we consider
V and W to be of the form V = αI and W = βI where α and β are scalar and I is a
unity matrix. Only the ratio of α with β is important.

The process noise spectral density β and the weighting γ in the cost function are
considered design parameters. The case where γ → 0 corresponds to unlimited control
authority of the full-state feedback controller. The choice Γ = B∗ allows for loop-
transfer recovery (Doyle & Stein 1979). Loop-transfer recovery of the LQG controller
to full-state feedback guarantees that robust performance occurs when the process
noise goes to infinity, i.e. β →∞, provided there exists no non-minimal-phase zero in
the plant. In our case, there are non-minimal-phase zeros, but a partial recovery is
still shown to be possible (Turan, Mingori & Goodwin 1994).

As we have noted in § 2, the analysis will be based on a single normal-mode
model because the normal modes decouple. Although only one controller is needed at
(Ra∗, k∗), it is implemented for different k∗ over a range of wavenumbers. The design
point is determined so that when the controller is implemented, no unstable region
appears below the neutral curve. Although the plant has multiple outputs, the system
can be analysed in terms of robustness as a single-input/single-output (SISO) system
by breaking the loop at the plant input (see figure 2b). We denote the output u of the
controller by u0 and the input u to the plant by ui. The open-loop system of equations
formed by breaking the loop at the input to the plant is

ẋa = Aaxa + Baui, u0 = Caxa + Daui, (3.19)
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where the augmented state composed of the plant and compensator in cascade is
xa = [x′, x̂′]′. The coefficient matrices are given by

Aa =

[
A 0
KfC (A∗ − B∗Kc − KfC∗ + KfD

∗Kc)

]
, Ba =

[
B
KfD

]
,

Ca = [0,−Kc], Da = 0.

 (3.20)

The evolution equation for the closed-loop feedback system is(
ẋ
˙̂x

)
=

[
A −KBKc
KfC (A∗ − KfC∗ − B∗Kc + Kf(D

∗ −KD)Kc)

](
x
x̂

)
, (3.21)

where ui = Ku0. In the above equation, matrices with an asterisk superscript corre-
spond to the design parameters k∗ and Ra∗. Note that in the particular case when
the plant operates at nominal design condition, i.e. k = k∗, Ra = Ra∗ and K = 1, the
closed-loop poles will correspond to the ensemble of eigenvalues of Af and of Ac. In
other words, (3.21) reduces to (3.17) and the filter poles and regulator poles decouple.
One can show this from the transformation(

x
x̂

)
=

[
I I
0 I

](
e
x̂

)
, (3.22)

where I is an identity matrix.
In general, the plant does not operate at the nominal design condition. Conse-

quently, there is a mismatch between the parameters (k∗, Ra∗) used to design the
controller and the operating parameters (k, Ra). Our analysis uses two methods to
characterize the robustness of the stabilized system: neutral curves and gain and phase
margins. In the first method, we select the nominal points (k∗, Ra∗) and construct the
region of stability of the dynamics system (3.21) as Ra and k vary with K = 1. The
boundary of this region is where the real part of the least-stable closed-loop pole of
(3.21) becomes zero. This boundary curve in the (k, Ra)-plane is called the neutral
curve. We identify the minimum of Ra with respect to wavenumber on the neutral
curve, so that the range of Ra from zero to this minimum, along with the whole range
of wavenumbers, is stable. By robustness we mean constructing the largest range of
Ra from zero up to this minimum.

The second method used to estimate robustness is the classical gain and phase
margins approach. This approach allows us to characterize robustness with respect
to more general uncertainties, such as unmodelled dynamics. To obtain the gain and
phase margins, we consider an error model K = |K|eiφ (see figure 2b), with the plant
operating at the nominal parameters k = k∗ and Ra = Ra∗. The shifts of |K| and φ
from these nominal values (|K| = 1, φ = 0) to where the system becomes unstable are
essentially the gain and phase margins, respectively. Their values can be determined
from accompanying Nyquist plots. The gain and phase margins are defined explicitly
in § 4.2.1 where these values indicate the amount of gain and phase change that the
system can tolerate due to uncertainties in the system dynamics.

4. Results
In this paper, we consider the condition of Pr = 7 which enables us to compare

our numerical results with those of Tang & Bau (1994, 1998b) and Howle (1997a). In
their experiments, however, Howle (1997b, c) used a high-Pr fluid (Pr ≈ 200) whereas
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in Tang & Bau (1998a) the Pr value of their testing fluid was not given. It should be
noted that while the stability properties in the uncontrolled case are independent of
Pr, they are Pr dependent in the controlled case.

Our numerical results have been obtained using Nz = 26 (see § 2.4) which appears to
be adequate for our stability analysis. For example, consider the closed-loop eigenvalue
problem of (3.21) with controller design values Ra∗ = 14.8Rac0 and k∗ = 3.15 and
the system evaluated at k = 5.5 and Ra = 14.52 which lies on the neutral curve (see
figure 8(d)), the norm of eigenvector (square root of the mean-square sum of entries)
of the neutral eigenvalue of the coefficient matrix of (3.21) appears well converged.
When Nz = 26 is increased to 52, this norm changes only by less than 0.7%.

4.1. Proportional feedback control

For convection in a layer of fluid bounded by rigid walls with prescribed tempera-
tures, it is well known that the critical Rayleigh number Rac0 = 1707.76 occurs at
wavenumber kc0 = 3.117 (Chandrasekhar 1961). Instead, when heat flux is prescribed
at the lower wall, the critical value Rac0 ≈ 1295.78 occurs at kc = 2.552.

In the case of proportional feedback control, the control law is u = −Kpz,
where Kp is a constant proportional gain. We consider the planar sensor model
to illustrate the effects of feedback control upon stability, and the results are shown in
figure 3(a).

In this figure three neutral curves are shown: each curve consists of a heavy
and a thin solid line, representing a monotonic mode and an oscillatory mode of
convection, respectively. The oscillatory mode corresponds to a complex conjugate
pair of eigenvalues. The three curves correspond to three sensor locations: zs = 0 at
the mid-plane and zs = ±0.1. The offset with respect to the mid-plane is 10% of the
thickness of the fluid layer and gives a substantial shift in stability properties. The
unstable and stable regions are separated by a neutral curve and are identified by the
letters U and S, respectively. In each case the maximum Ra achievable corresponds
to the crossing point between the heavy and thin line.

For zs = 0, the monotonic mode is the lowest even mode of convection since the
first odd mode is unobservable. In fact, in this case the sensor plane coincides with the
node of the first odd mode. As Kp increases beyond the crossing point the critical Ra
decreases. With this in mind, a pole-zero map and a root locus diagram are helpful
to understand the stability behaviour. Figure 3(b) shows the open-loop poles (×) and
zeros (◦) and figure 3(c) the corresponding root locus diagram. For a given Ra, as Kp

increases from zero the unstable pole moves to the left while a stable pole moves to
the right. Subsequently, the two poles coalesce. After coalescence a pair of complex
conjugate poles (corresponding to the oscillatory mode) break off the real axis. The
break-away point (where the coalescence occurs) moves to the right as Ra increases.
The crossing point in figure 3(a) corresponds to the coalescence at the origin in
figure 3(c). As Ra increases and keeping Kp constant, the closed-loop poles move to
the right.

From the root locus of figure 3(c), the results of figure 3(a) can be interpreted as
follows. For Ra above the crossing point, the system is unstable for any gain Kp. For
Ra below the crossing point, there exists a finite range of gain Kp in which the system
is stable. The lower end point of the range corresponds to the minimal value of Kp

required in order to move the monotonic pole to left-half s-plane. The upper end
point of the range corresponds to the maximal value of Kp that can be used before
the pair of complex conjugate modes become unstable.

The stability diagram for the shadowgraph sensor model can be found in Howle
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Figure 3. (a) Neutral curves for the planar sensor model using the proportional feedback control,
corresponding to zs = −0.1, 0 and 0.1 (heavy and thin lines indicate monotonic and oscillatory onset,
respectively). (b) Pole-zero diagram of the plant for k = 4.4, Ra = 3.5Rac0 and (c) corresponding
root loci for Kp varied between 0 and 2000.

(1997a). In this case there are no unstable complex conjugate modes. As Kp increases
to ∞, the critical Ra increases monotonically to about 3.13 times Rac0.

4.2. LQG (H2) control

The limitation in the performance of proportional feedback control provides the
motivation for developing LQG controllers. We will apply the LQG synthesis method
to both planar sensor and shadowgraph sensor models. We first seek to reduce the
number of design parameters in our analysis. For a given set of physical parameters
we examine the closed-loop eigenvalues and observe that for a stable system the real
part of the least-stable eigenvalue has its largest magnitude when γ → 0 and β →∞.
Since the observed improvements become less significant for γ < 0.1 and β > 100, we
let γ = 0.1 and β = 100.
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Figure 4. Stability diagrams for the planar sensor model with one sensor, using the LQG control.
The nominal condition (k∗, Ra∗) is denoted by a solid circle. The heavy and thin lines correspond
to the monotonic and oscillatory onsets, respectively. (a, b, f) zs = 0.15 and (c, d) zs = −0.15. (a–e)
Ra∗ = 5Rac0 and k∗ = 5.3 and (f) Ra∗ = 10Rac0 and the same k∗. In (e) the sensitivity about zs = 0
with respect to zs is shown. In (f) a vast lower unstable region developed at a sufficiently high Ra∗
is shown.

4.2.1. Planar sensor model

(i) One-sensor control
The one-sensor model is especially convenient for understanding the closed-loop

stability properties of the system. Once the qualitative properties of this case are
understood, the performance of the controller will be improved by adding additional
sensors.

Figure 4(a–f) shows the neutral stability diagram in the (k, Ra)-plane for a controller
designed at the nominal values k∗ and Ra∗. The nominal point (k∗, Ra∗) is indicated
by a solid circle in the figures. The thin line and heavy line curves correspond to
the neutrally stable oscillatory and monotonic modes, respectively. In figure 4(a, b)
the sensor plane is located at zs = 0.15. We use a larger sensor displacement with
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respect to the mid-plane than the one used for the proportional feedback control to
emphasize the effect on the neutral curve. Figure 4(a) shows the neutral curves for a
controller designed at the nominal point Ra∗ = 5Rac0 and k∗ = 5.3. The neutral curves
have two minima, and the value k∗ = 5.3 has been chosen to make the minima nearly
the same. The controller stabilizes the system for any Ra < Ra∗. To characterize the
stability of the controlled system with respect to Ra∗, we re-design the controller for
Ra∗ = 6Rac0 while maintaining k∗ fixed. Figure 4(b) shows a dramatic change in the
neutral curve: the banana-shaped branch moves downward giving rise to an unstable
region below Ra∗.

To further characterize the stability of the controlled system with respect to the
location of the sensor, we move the sensor plane at zs = −0.15. We design a controller
for k∗ = 5.3, as before, and Ra∗ = 5Rac0 (figure 4c) and Ra∗ = 7Rac0 (figure 4(d)).
Figures 4(c) and 4(d) show similar stability characteristics as those in figures 4(a)
and 4(b). However, the two branches of the neutral stability curves switch roles. The
left branch now represents the monotonic onset while the right branch represents the
oscillatory onset.

The role switch in relation to the location of the sensor plane deserves a closer
examination. We consider a smaller perturbation of the sensor location with respect
to the mid-plane. Figure 4(e) shows the stability limits for three very close sensor
locations. At zs = 0 (solid lines), the neutral curve is composed of an oscillatory
segment on the left and a monotonic segment on the right. At zs = 0.005 (dashed-
dotted lines), the monotonic segment of the neutral curve retreats rightward while
the oscillatory segment dominates the range. At zs = −0.005 (dashed lines), the
opposite effect occurs: the oscillatory segment of the neutral curve retreats to the
left. These results are consistent with the results presented in figures 4(a–d). Since
significant distortions and shifts of the stability limits have occurred within a very
small perturbation of zs, sensitivity to sensor location becomes an important factor
for the practical implementation of the sensors. As subsequent results will show, this
type of sensitivity is no longer present if three sensors are incorporated.

In order to show that the lower unstable region will become much larger with
further increase of Ra∗, we design a controller at the nominal values Ra∗ = 10Rac0
and k∗ = 5.3 and place the sensor plane at zs = 0.15 for an illustration. Figure 4(f)
shows a thin island of stability in the unstable region. This stable region is bounded by
two neutral curves which coalesce on the right and intersect on the left. Figure 4(a–f)
reveals the occurrence of an unstable region at Ra < Ra∗ which severely restricts the
achievable degree of stabilization.

The results of proportional feedback control have demonstrated the significance of
the sensor location at zs = 0. This location gives the maximum range of stabilization
even for the LQG controller. We observe that Ra∗ can be raised to 10Rac0 at properly
chosen values of k∗ (see figure 5a–c) without inducing a large lower unstable region,
if the sensor is placed at the mid-plane. At this Ra∗, the system is stable up to the
critical Ra of the first odd mode (Rac ≈ 10.31Rac0 and kc = 5.36, see Chandrasekhar
1961), since the first odd mode is not stabilizable because it is unobservable.

Hence, there is no reason to place Ra∗ above 10.31Rac0. Below this value, however,
the critical point of the neutral curve lies to the right of the nominal point if k∗ is
sufficiently small, or to the left of the nominal point if k∗ is sufficiently large. For this
case, we can use two nominal points to lift the overall neutral curve to coincide with
the neutral curve of the first odd mode.

Consider Ra∗ = 10Rac0, just below the Rac of the first odd mode. We choose the
two nominal k∗ on both sides of kc = 5.36. The values k∗ = 4 and 6 (marked by solid
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Figure 5. Stability diagrams for the planar sensor model with a single mid-plane sensor: (a) neutral
curve for the nominal condition k∗ = 4 and Ra∗ = 10Rac0; (b) neutral curve for the nominal
conditions k∗ = 6 and Ra∗ = 10Rac0; (c) the resulting neutral curve by incorporating the two sets of
nominal conditions. This curve coincides with the neutral curve of the first odd mode of convection
in the uncontrolled case.

circles) produce small dips in the unstable region and are reasonable to use as nominal
points. Figure 5(a–c) illustrates how the stability limit is determined by the principle of
superposition. The nominal point at k∗ = 4 in figure 5(a) corresponds to the unstable
region delimited by the heavy solid lines which has a minimum Ra ≈ 8.4Rac0. For
k < 5.9, the stability limit corresponds to the neutral curve of the first odd mode.
Similarly, in figure 5(b) the second nominal point at k∗ = 6 corresponds to the
unstable region delimited by the thin and heavy solid lines which has a minimum at
about 9.5Rac0. The thin curve corresponds to an oscillatory onset. The heavy curve
coincides with a segment of the neutral curve of the odd mode. If both nominal
points are used for the controllers, then the overall stability limit coincides with the
neutral curve of the first odd mode upon superposition. The controllers designed at
the first nominal point k∗ = 4 operate over the band 0 < k < kc ≈ 5.36, while the
controller designed at k∗ = 6 operates over the wavenumbers greater than kc.

The result shows that the degree of stabilization is significantly higher than that
achievable with the proportional control. Unfortunately, the one-sensor design is not
sufficiently robust with respect to the location of the sensor plane. This problem
is significant because a perfect sensor placement is not achievable in practice. To
demonstrate the sensitivity, in figure 6(a) we consider a planar sensor at zs1 = 0.01, i.e.
slightly off the mid-plane, and re-design the controller for Ra∗ = 10Rac0 and k∗ = 4.
Figure 6(a) shows the presence of a thin stable region in the middle of the unstable
region. This stable region is bounded from above by a neutral curve of an oscillatory
mode (thin line) and below by a neutral curve of a monotonic mode (heavy solid
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Figure 6. (a) Stability diagram for the one-sensor model with a small offset zs = 0.01. Results show
a vast lower unstable region below Ra∗ = 10Rac0. The heavy (thin) solid line corresponds to a
monotonic (oscillatory) onset. (b) Stability diagram for the two-sensor model, with a second sensor
positioned at zs = −0.01. As a result, the lower unstable region is eliminated.

line). The stable region exists for k < 3. As k increases it becomes a very narrow strip
which eventually terminates at k ≈ 7.1, similar to the behaviour in figure 4(f). For
comparison the neutral curve for the zs = 0 case (thin dashed line) is also included
in figure 6(a). Comparing figure 6(a) to figure 5(c), we see a dramatic difference in
stability properties due to a small shift of sensor location of 0.01. Fortunately, this
sensitivity can be significantly reduced by introducing a second sensor located close
to the mid-plane. Figure 6(b) shows the stability diagram when a second sensor is
included. This case will be discussed in the next subsection.

To characterize the robustness of the controlled system with respect to plant
uncertainties we compute gain and phase margins at Ra = Ra∗ and k = k∗. In all
the cases considered, the open-loop system has one unstable pole so that for closed-
loop stability the Nyquist locus encircles (counter-clockwise) the point (−1, 0) once.
Because of this property, in general there exists an upper and lower value for each gain
and phase margin. The upper and lower gain margins are designed to measure how
much the gain K can be decreased, or increased, before the system becomes unstable
(figure 2b). Likewise, the upper and lower phase margins are designed to measure how
much the phase can be decreased, or increased, before the system becomes unstable.
Accordingly, the lower and upper gain margins are defined as 20 log10(1/X1) (dB)
and 20 log10(X2) (dB), respectively, where X1 (|X1| < 1) and X2 (|X2| > 1) are the
smaller and larger x-distances of the two crossing points of the Nyquist locus with
the x-axis. Since the angle is measured positive in the counter-clockwise direction,
the lower phase margin is defined as 180◦ − sin−1(Y1) and the upper phase margin
is defined as sin−1(Y2)− 180◦, where Y1 (positive) and Y2 (negative) are, respectively,
the y-coordinates of the intersecting points between the Nyquist locus and the unit
circle centred at origin.

For the one-sensor model, the gain and phase margins are too small. At Ra = Ra∗ =
10Rac0, for example, the margins are typically about 0.5 dB and 4◦. In engineering
applications, margins below 3 dB and 10◦ are often considered marginal. Therefore,
we conclude that as the system is stabilized for higher values of Ra, the magnitude
of the gain increases, increasing the sensitivity, as indicated by the very small gain
and phase margins. Sensitivity can be reduced by implementing multiple sensors, as
indicated by the improved gain and phase margins (see next subsections).
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(ii) Two-sensor control
To eliminate the lower unstable region shown in figure 6(a), we place two sensors

on opposite sides of the mid-plane at zs = ±0.01. It is crucial that both sensors are
close to the mid-plane. Placement of one sensor or both away from the mid-plane
will give rise to a lower unstable region.

In the two-sensor model we re-design the controller at the nominal condition used
for the case shown in figure 6(a). The two-sensor model result is shown in figure 6(b),
in which the same dashed curve as in figure 6(a) is included for comparison. We
observe that the lower unstable region has disappeared. The neutral curve of the
monotonic mode (heavy solid line) terminates at k ≈ 7.3. Beyond this wavenumber
the neutral curve of an oscillatory mode replaces the stability limit (thin solid line). If
we allow zs to tend to zero, then the solid curve in figure 6(b) will approach the dashed
curve. The gap between the two curves indicates that there is a trade-off between the
large pole shifts due to the small sensor-plane offset, and the information gained by
adding one more sensor near to the mid-plane. The gain and phase margins increase
by roughly 10% to 20% by adding the second sensor. However, the improvements
are still too small to be considered acceptable.

Better gain and phase margins (over 100% increase) can be obtained with sensors
placed further away from the mid-plane. The sensors located at about zs = ±0.25
appear to give the best result. However, in this case a lower unstable region forms.
The two-sensor model is still not suited for practical implementation. For this reason,
we shall not devote more effort to analysing this case. Instead, we proceed to the
three-sensor model.

(iii) Three-sensor control
When three sensors are used, we can improve gain and phase margins by placing

two outer sensors further away from the mid-plane without inducing any lower
unstable region, provided that the remaining sensor is placed at the mid-plane. With
two sensors placed significantly away from the mid-plane, it is observed that the
sensor located at the mid-plane is no longer sensitive to a small offset. To determine
the best sensor locations, we first observe that a lower unstable region always occurs
when no sensor is placed at or very close to the mid-plane. With a mid-plane sensor in
place, then by fixing one outer sensor and moving the other, it appears that the best
locations are when the two outer sensors are at equal distance from the mid-plane.
The best locations are determined in terms of the minimum of the real part of the
least-stable closed-loop pole. Hence, for our design, we let the three sensor locations
be z(1)

s = −zs, z(2)
s = 0 and z(3)

s = zs.
In order to improve gain and phase margins, we consider the Nyquist plots for

various values of zs. In the subsequent results concerning the stability limit of the
controlled system (see figure 8), a good nominal condition is found to be k∗ = 3.15
and Ra∗ = 14.8. For this nominal condition, figure 7(a) shows the Nyquist curves
for zs = 0.1 (dotted), 0.2 (dashed) and 0.3 (solid). Figure 7(b) provides a magnified
view of figure 7(a) near the point (−1, 0). The case zs = 0.3 presents no lower phase
margin but has an upper phase margin of about 20.5◦. The upper and lower gain
margins are about 3.3 dB and 4.4 dB, respectively. These values of gain and phase
margins are quite satisfactory. A slight improvement of the margins is still possible
by increasing zs further, at the expense of increasing the real part of the least-stable
pole closer to zero, thus making the system less stable. Thus, zs = 0.3 appears to be
our best choice. It is desirable to see how changing the values of k∗ and Ra∗ will
affect the gain and phase margins for zs = 0.3. In figure 7(c) we compare the Nyquist
curves for three different nominal conditions: k∗ = 3.15 and Ra∗ = 14.8Rac0 (solid),
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Figure 7. Nyquist plots for the three-sensor model: (a) at nominal condition k∗ = 3.15 and
Ra∗ = 14.5Rac0 and sensor locations are zs = 0.1 (dashed), 0.2 (dotted) and 0.30 (solid); (b)
magnified view of (a); (c) at zs = 0.3 and nominal conditions with k∗ = 3.15 and Ra∗ = 14.5Rac0
(solid), k∗ = 4.5 and Ra∗ = 12.5Rac0 (dashed) and k∗ = 6.5 and Ra∗ = 15Rac0 (dotted); (d) magnified
view of (c).

k∗ = 4.5 and Ra∗ = 12.5Rac0 (dashed) and k∗ = 6.5 and Ra∗ = 15Rac0 (dotted). This
choice of nominal points is based on the subsequent analysis of the stability limit of
the controlled system. As shown in the magnified view of figure 7(d), the upper phase
margin and the upper and lower gain margins for the three nominal conditions are
quite close, suggesting that these margins are not sensitive to the values of k∗ and
Ra∗. However, the lower phase margin decreases rapidly as k∗ and Ra∗ increase, as
shown by the dotted line. The gain and phase margins for the design case (solid) are
within values used in practice.

Now, we consider the stability limit of the controlled system. In order to understand
how the choice of the nominal condition (k∗, Ra∗) affects stability, we present the
results for each set of nominal condition in figures 8(a)–8(c).

For each nominal point the stable region is delimited by the neutral curve. Our
goal is to maximize the minimum of the neutral curve by appropriately choosing
the nominal point. In figure 8(a) we consider k∗ = 3 and Ra∗ = 15Rac0. There is no
unstable region to the left of this nominal point and the neutral curve to its right
corresponds to an oscillatory mode. The neutral curve in figure 8(b) corresponds to
k∗ = 4.5 and Ra∗ = 12.5Rac0. An unstable banana-shaped region (monotonic onset) is
present on each side of the main unstable region. The minimum of the main unstable
region is about Ra ≈ 14.5Rac0. We have decreased Ra∗ from 15Rac0 to 12.5Rac0
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Figure 8. The stability diagrams for the three-sensor model with sensor planes located at zs = −0.3,
0 and 0.3, and nominal conditions at (a) k∗ = 3 and Ra∗ = 15Rac0, (b) k∗ = 4.5 and Ra∗ = 12.5Rac0,
(c) k∗ = 6.5 and Ra∗ = 15Rac0. (d) k∗ = 3.15 and Ra∗ = 14.8Rac0 (the design conditions).

because at Ra∗ = 15Rac0 (not shown) the two banana-shaped unstable regions have
merged generating a vast lower unstable region. However, because of the formation
of an unstable region on each side, this nominal point is not desirable. Figure 8(c)
shows the neutral curve for the system controlled by controllers designed at nominal
condition k∗ = 6.5 and Ra∗ = 15Rac0. The banana-shaped region on the left of the
nominal point has disappeared, but the region on the right remains.

By considering additional nominal points to the right of the first nominal point
it seems that there is no significant improvement in stability. In other words, when
the nominal wavenumber k∗ is larger than a certain value, the controllers become
ineffective in stabilizing the entire region up to Ra = Ra∗, even though better local
stabilization is always possible. Based on the results of figures 8(a)–8(c), it appears
that nominal points to the right of the first point do not improve the situation. In
fact, we have tried more cases involving different locations of the nominal points, but
none seems to raise the minimum Ra of the unstable region. To achieve a maximum
Ra for the stable range, we fine-tune the first nominal point and obtain k∗ = 3.15
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and Ra∗ = 14.8Rac0. For this point the stability diagram is shown in figure 8(d).
Stabilization up to Ra ≈ 14.5Rac0 is achievable by using controllers designed at only
one nominal point. The neutral curve is formed by an oscillatory mode (thin solid
line) and a monotonic mode (heavy solid line). To illustrate the degree of stabilization
with respect to the uncontrolled system, we include in the figure the neutral curve
(dashed line) for the uncontrolled convection. Without feedback control, the region
above the dashed curve is unstable to convection. Below the solid curves, however,
the region is stabilized by the LQG control.

In § 2, we described how in the practical implementation a controller is responsible
for stabilizing an unstable normal mode whose wavenumber is indicated by a point
on the k-axis in figure 8(d). Results suggest that we can use the design condition
k∗ = 3.15 and Ra∗ = 14.8Rac0 for all controllers. Coincidentally, we note that the
design wavenumber, k∗ ≈ 3.15, is quite close to the critical wavenumber of the
uncontrolled convection, kc0 ≈ 3.12.

We conclude the analysis of the planar sensor model by discussing the time response
of the closed-loop system. Our design condition is at k∗ = 3.15 and Ra∗ = 14.8Rac0.
For high operating values of Ra, if we turn on the controller at this design condition
with no initialization of the estimator, the transient response of the controlled system
induces a large actuator signal u(t), which will produce actuator saturation in practical
applications. Therefore, in practical applications, the operating Ra value should be
achieved in increments of Ra, so that for each increment the estimator remains
initialized. For example, consider a controller operating at k = kc ≈ 5.5. Assume
that we have increased the operating Ra value gradually up to Ra = 12Rac0 so that
the closed-loop system remains at the no-motion equilibrium. When approaching
equilibrium, both the plant internal states and the estimator states tend to zero. As
an example, we increase Ra from Ra = 12Rac0 by an increment of 2Rac0 to the
operating value Ra = 14Rac0. Figure 9 shows the transient time responses for this
case. In particular, figure 9(a) shows the temperatures measured by the planar sensors
as functions of time, while figure 9(b) shows the control action signal u(t). The initial
transient disappears and the system settles to a new no-motion equilibrium. If we
use a smaller increment than 2Rac0, an even better result can be expected in terms of
smaller overshoot and a faster approach to equilibrium.

It is important to consider the parameters in a physical set up to see if the LQG
controller can be applied to an experiment. We note that t is in the unit of diffusive
time, d2/κ. For example, in the case of a layer of water of thickness d = 0.8 cm,
this unit is about 438 s. A mildly supercritical condition Ra ≈ 1800 corresponds
to ∆T ∗ = 0.14 ◦C, while for Ra = 14Rac0, the basic temperature difference is about
1.86 ◦C. Thus, the physical quantities are reasonably easy to achieve in practice.

Comparison between the stability achievable by the proportional feedback control
(Tang & Bau 1993, 1994 as well as our figure 3a) and the LQG control is possible
only from a qualitative point of view. The LQG controller is more complex, due
to the additional filter dynamics. The neutral curve structure is complex because
the unstable regions can occur above and below the design value Ra∗. However, a
local stable region about Ra∗ can always be maintained. In contrast, for proportional
feedback there is no stable region beyond a certain value of Ra, regardless of the
gain Kp.

4.2.2. Shadowgraph sensor model

We now turn to the shadowgraph sensor model. The maximum Ra achievable over
the stable range for the proportional feedback control is about 3.13Rac0. We attempt
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Figure 9. The time response of (a) the three measurements and (b) the control action u(t), in the
three-sensor model with the nominal condition k∗ = 3.15 and Ra∗ = 14.8Rac0. The convection mode
considered is at Ra = 14Rac0 and the least-stable wavenumber about k = 5.5.

to increase the stable region using the LQG method. However, for this sensor model
our results indicate a significantly weaker stabilization. We have first designed a
controller for Ra∗ ≈ 10Rac0 but encountered a vast lower unstable region. The second
convection mode, which is closest to the imaginary axis, is destabilized in the control
process. As a result, we gradually decreased the nominal condition Ra∗, down to a
value of 5Rac0. The drop in performance in the critical Rayleigh number with respect
to the planar sensor model is probably due to the nature of the shadowgraph sensor,
which only measures the averaged temperature of the fluid layer. Figure 10(a) shows
the stability diagram when controllers designed at five nominal points are used. The
nominal points have same Ra∗ while k∗ increases by a factor ∆k∗ = 1. The results
show that, except for the first nominal point (k∗ = 1), each nominal point is enclosed
by a left and a right stability limit (thin line for oscillatory mode and heavy line for
monotonic mode). The stable range of wavenumbers associated with each nominal
point is typically small. Figure 10(a) reveals two depressed unstable regions that reach
below Ra = Ra∗ (near k = 2.4 and k = 3.4). To demonstrate how these dips can be
removed, we add two more nominal points: one is chosen at k∗ = 2.4 and the other
at k∗ = 3.3, both with a slightly higher Ra∗ = 5.4Rac0. The improved result is shown
in figure 10(b), which indicates that the minimum Ra of the unstable region is now
above 5Rac0.

Unlike the planar sensor model, the minimum Ra of the neutral curve obtained by
applying a controller designed at a single nominal point over the whole wavenumber
range is not that much higher than the value obtained using proportional feedback
control. There may be further improvements on the LQG controller to be made, but
we will not attempt further design in this study.
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Figure 10. (a) The stability diagram for the shadowgraph sensor model showing the stability limit
corresponding to five equally spaced nominal points at Ra∗ = 5Rac0. (b) An improved design with
two nominal points added. Stabilization for the entire range of wavenumbers up to Ra∗ = 5Rac0 is
achievable for this improved case.

5. Conclusion

We have investigated the LQG (H2) controller design for two sensor models (planar
sensor model and shadowgraph sensor model) studied by previous authors (Tang &
Bau 1994; Howle 1997a) using proportional controllers. Based on our results for
Pr = 7, we have shown that the robustness of the controlled system is improved in
two aspects: (i) the controller remains stable over a larger range of the parameter
Ra, and (ii) the robustness of the controller accommodates to a degree unmodelled
dynamics and nonlinearities, as measured by gain and phase margins on the Nyquist
diagram. It should be noted that although only one controller is needed to be designed
at (k∗, Ra∗), this controller is implemented at each wavenumber k to span the entire
range of unstable wavenumbers.

The number of sensors plays an important role in dramatically improving the
robustness of the stabilization of the system operating at large Ra. Because multiple
sensor planes can be easily incorporated into the planar sensor model, the performance
of the planar sensor model is found to be superior to that of the shadowgraph sensor
model, which only utilizes averaged temperature measurements. By using three planar
sensors, it is possible to stabilize the no-motion state up to Ra ≈ 14.5Rac0. The
controller has 3 dB of gain margin and 20◦ of phase margin at the design parameter
values. Beyond this value of Ra, stabilization in the region near to a nominal point
can still be achieved, but an unstable region forms for Ra below Ra∗. It should be
noted that in our design procedure, we designed the controllers to span the whole
range of unstable wavenumbers and at the same time demanded that the whole Ra
range from zero up to 14.5Rac0 be stable.
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We have also shown that the transient responses incurred at the initial time
can be reduced significantly by increasing Ra to its operating value in small incre-
ments. This technique allows us to initialize the estimator at each increment of Ra
and consequently avoid controller saturations. Furthermore, by making incremental
changes in Ra and using a controller designed to stabilize the system in a region
about the design values, the value of the maximum value of Ra could be increased
further, even though there will be unstable regions formed below stable regions in
Ra.

So far, we have assumed that the order of the controller is equal to the order of
the plant. In full numerical simulations and experiments, controller designs based
on reduced-order models are more practical for implementation (see, for example,
Cortelezzi & Speyer 1998; Armaou & Christofides 2000). In our current model the
actuation is assumed to be distributed continuously. In practice it will be discrete and
implementation issues need to be addressed.
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